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1 Non abelian groups of order 8

1.1 The dihedral group

Last time we found two nonabelian groups of order 8, the dihedral group D8 (the symme-
tries of a square) and the quaternion group Q8.

Problem: How many ways are there to arrange 8 non-attacking rooks on a chessboard?
Here, non-attacking means that two rooks cannot be placed in the same row or column.
There are 8 choices of where to put a rook in the first row, 7 places of where to put a rook
in the second row, and so on. So the number of ways is 8!.

Consider a modification to this problem: how many ways are there to do the above up
to symmetry? Well, D8 acts on the configurations by acting on the chessboard. How many
orbits are there?

Theorem 1.1 (Burnside1). Suppose a group G � S. Then the number of orbits under this
action is equal to the average number of fixed points of the action. That is,

|{Orbits}| = 1

|G|
∑
g∈G

f(g),

where f(g) is the number of elements of S fixed by g.

Proof. Look at the set of pair (g, s) withg · s = s. Count the number of pairs in two ways:
Method 1: For each g, there are f(g) choices for s. So we get

∑
g∈G f(g).

Method 2: Look at one orbit of G of S. Say the orbit contains some s ∈ S. By
Lagrange’s theorem, the number of points in the orbit is |G| / |Gs|, where Gs is the stabilizer
of s. So |G| = |Orbit| × |number of elements in G fixing a point of the orbit|. This means
that the number of elements of G fixing a point in the orbit is the same for each point in
the orbit. Then

|pairs (g, s)| =
∑
orbits

|{pairs in orbit}|

1Many mathematicians have proved this independently of each other, so we could really put anyone’s
name here.
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=
∑
orbits

|Orbit| × |number of elements in G fixing a point of the orbit|

=
∑
orbits

|G|

= |G| × |{Orbits}| .

Dividing both our results by |G| gives us the desired equality.

Definition 1.1. Two elements s, b ∈ G are conjugate if there exists some g ∈ G such that
a = gbg−1. Informally, elements are conjugate if they “sort of look the same.”

The elements of D8 that are conjugate will have the same number of fixed points. To
calculate the number of configurations fixed by each conjugacy class, it is helpful to draw
pictures and eliminate rows based on the symmetries.

Conjugacy classes of G number of configurations fixed by element

identity 8! = 40320
reflections parallel to sides 2× 0 = 0

switch both diagonals 8× 6× 4× 2 = 384
rotation by π/2 2× (6× 2) = 24

reflection along a diagonal 2× 764 = 1528

The most tricky of these is the last one; let cn be the desired number (not yet multiplied
by 2, the size of the conjugacy class), where the chessboard is n × n. then we have a few
possibilities: if we place a rook in the top left corner, then there are cn−1 ways to arrange
other rooks. If we place a rook elsewhere in row 1, we have cn−2 ways to arrange the other
rooks. So we get a recurrence relation cn = cn−1 + (n − 1)cn−2, and we can solve to get
c8 = 764.

These sum up to be 42256, so using the above theorem, we have our final answer as
42256/8 = 5282 configurations.

1.2 Quaternions

We can represent quaternions using complex matrices:

1 =

[
1 0
0 1

]
I =

[
i 0
0 −i

]
J =

[
0 i
i 0

]
K =

[
0 −1
1 0

]
Any nonzero quaternion has an inverse. Conjugate z̄ = a − bI − cJ − dK, so zz̄ =

a2 + b2 + c2 +d2. Then z−1 = 1/z = z̄/(zz̄) = z̄/(a2 + b2 + c2 +d2), where the denominator
is nonzero if z 6= 0. So nonzero quaternions form a group under multiplication. Call
|z| = a2 + b2 + c2 + d2. Letting H∗ be the nonzero quaternions, we have a homomorphism
H∗ → R∗ that takes z → |z|. This homomorphism has kernel S3. In fact, our quaternion
group is a subgroup of S3.
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Identify R3 = {bI + cJ + dK ∈ H}. The map v 7→ g−1vg (for g a nonzero quaternion)
maps R3 → R3. It is a rotation of R3.2 So we get a homomorphism S3 → SO3(R)︸ ︷︷ ︸

rotations of R3

.

This is not an isomorphism because the kernel has order 2 (exercise). We get a short exact
sequence

1 to {±1} → S3 → SO3(R)→ 1.

Pick any finite group of rotations, a subset of SO3(R). For example, pick rotations of
a rectangle in R3, Z/2Z × Z/2Z, or rotations of an icosahedron (has 60 elements). The
inverse image of the previous homomorphism is a subgroup of S3 of twice the order. In
our examples, we get the quaternions and the “binary icosahedral group.”

2 Groups of order 9, 10, and 12

2.1 Groups of order 9

There are two natural examples for the abelian cases:

I Groups of order 9

I Z/9Z
I Z/3Z× Z/3Z

These are the only abelian groups: if we have an element of order 9, then we have Z/9Z,
and if all elements are of order 3 an G is abelian, then it is a product of vector spaces over
3 elements, F3 × F3

∼= Z/3Z× Z/3Z.
In fact, these two are the only groups of order 9 due to the following theorem:

Theorem 2.1. Let p be prime. All groups of order p2 are abelian.

We require a lemma:

Lemma 2.1. Any group of order pn has nontrivial center.

Proof. Sum over the conjugacy classes of G, picking some g in each Cg. Denote the center
of G as Z. If g is in the center of G, then its conjugacy class has only 1 element: g itself.
Then

|G| =
∑
g

|Cg| =
∑
g

|G|
|Gg|

=
∑
g/∈Z

|G|
|Gg|

+ |Z|

Since p divides the order of G and the summation term, p divides the order of the
center. In particular, the center contains at least p elements and is nontrivial.

2In computer graphics, such as in video games, quaternions are used to compute rotations of R3. They
are quicker to multiply than 3× 3 matrices.
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Proof. Suppose G has order p2. By our lemma, the center is nontrivial, so the center has
order p or p2.

However, the center cannot have order p. Suppose it does, and pick some g not in the
center. If g2 ∈ Z, then g has order p2, so the group is cyclic and hence abelian. Then
g2 /∈ Z, so 〈g〉∩Z = {e}. Then G = 〈g〉Z, so every element can be written as gna for some
n and a in the center of G. Then all elements commute with each other, so the center is
all of G, which is a contradiction.

So the center has order p2 and is hence all of G. So G is abelian.

2.2 Nilpotent groups

Suppose G0 has order pn. Take its center Z0, and let G1 = G0/Z0. Keep quotienting out
by the center. One might think that the center would be trivial after quotienting out by
the center, but this is actually not true. Take G = {±1,±i,±j,±k} and Z = {±1}; then
G/Z ∼= Z/2Z× Z/2Z has nontrivial center.

Definition 2.1. A group is nilpotent if it can be reduced to 1 element by repeatedly taking
the quotient of its center at each step.

All products of groups of prime power order are nilpotent. Later, we will prove a
converse: any finite nilpotent group is the product of group of order pn.

2.3 Groups of order 2p

For groups of order 10, and more generally order 2p for some prime p, we can generalize
the methods we used for groups of order 6:

1. Pick subgroup H of order p

2. H has index 2 so is normal

3. Pick subgroup S of order 2

As in the case of order 6, G ∼= H o Z/2Z. This is classified by the ways Z/2Z can act
on Z/pZ. Later, we will show that the automorphisms are isomorphic to (Z/pZ)∗, so we
get two groups:

I Groups of order 2p

I the abelian group Z/2pZ ∼= Z/2Z× Z/pZ
I the dihedral group D2p, the symmetries of the regular 2p-gon (nonabelian)
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2.4 Groups of order 12

Our list will be:

I Groups of order 12

I the abelian group Z/12Z ∼= Z/3Z× Z/4Z
I the abelian group Z/6Z× Z/2Z ∼= Z/3Z× Z/2Z× Z/2Z
I the nonabelian group D12, the dihedral group of order 12 (∼= D6 × Z/2Z)3

I rotations of a tetrahedron (nonabelian)

I binary dihedral group (nonabelian)

3D8n+4 splits as a product for any n ∈ N.
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